

Multi-Drug One Step Screen Test Device (Urine)

Package Insert

REF-R1115 English

Package insert for testing of any combination of the following drugs:

Amphetamine, Amphetamine 500, Amphetamine 300, Barbiturates. Benzodiazepines, Tramadol 100, Buprenorphine, Cocaine, Cocaine 150, Marijuana, Methadone, Methamphetamine, Methamphetamine 500, Methamphetamine 300, Methylenedioxymethamphetamine, Morphine 300, Opiate 2000, Oxycodone, Phencyclidine, Propoxyphene and Tricyclic Antidepressants.

A rapid, one step screening test for the simultaneous, qualitative detection of multiple drugs and drug metabolites in human urine.

For medical and other professional in vitro diagnostic use only. INTENDED USE & SUMMARY

Urine based tests for multiple drugs of abuse range from simple immunoassay tests to complex analytical procedures. The speed and sensitivity of immunoassays have made them the most widely accepted method to screen urine for multiple drugs of abuse.

The Multi-Drug One Step Screen Test Device (Urine) is a lateral flow chromatographic immunoassay for the qualitative detection of multiple drugs and drug metabolites in urine at the following cut-off concentrations in urine:1

This test will detect other related compounds, please refer to the Analytical Specificity table in this package insert.

Test	Calibrator	Cut-off (ng/mL)
Amphetamine (AMP)	d-Amphetamine	1,000
Amphetamine (AMP 500)	d-Amphetamine	500
Amphetamine (AMP 300)	d-Amphetamine	300
Barbiturates (BAR)	Secobarbital	300
Benzodiazepines (BZO)	Oxazepam	300
Buprenorphine (BUP)	Buprenorphine	10
Cocaine (COC)	Benzoylecgonine	300
Cocaine (COC 150)	Benzoylecgonine	150
Marijuana (THC)	11-nor-Δ ⁹ -THC-9 COOH	50
Methadone (MTD)	Methadone	300
Methamphetamine (MET)	d-Methamphetamine	1,000
Methamphetamine (MET 500)	d-Methamphetamine	500
Methamphetamine (MET 300)	d-Methamphetamine	300
Methylenedioxymethamphetamine (MDMA)	d,1-Methylenedioxymethamphetamine	500
Morphine (MOP 300)	Morphine	300
Opiate (OPI 2000)	Morphine	2,000
Oxycodone (OXY)	Oxycodone	100
Phencyclidine (PCP)	Phencyclidine	25
Propoxyphene (PPX)	Propoxyphene	300
Tramadol (TRL)	Tramadol	100
Tricyclic Antidepressants (TCA)	Nortriptyline	1,000

This assay provides only a preliminary analytical test result. A more specific alternate chemical method must be used in order to obtain a confirmed analytical result. Gas chromatography/mass spectrometry (GC/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be applied to any drug of abuse test result, particularly when preliminary positive results are used. PRINCIPLE

The Multi-Drug One Step Screen Test Device (Urine) is an immunoassay based on the principle of competitive binding. Drugs which may be present in the urine specimen compete against their respective drug conjugate for binding sites on their specific antibody

During testing, a urine specimen migrates upward by capillary action. A drug, if present in the urine specimen below its cut-off concentration, will not saturate the binding sites of its specific antibody. The antibody will then react with the drug-protein conjugate and a visible colored line will show up in the test line region of the specific drug strip. The presence of drug above the cut-off concentration will saturate all the binding sites of the antibody. Therefore, the colored line will not form in the test line region.

A drug-positive urine specimen will not generate a colored line in the specific test line region of the strip because of drug competition, while a drug-negative urine specimen will generate a line in the test line region because of the absence of drug competition. To serve as a procedural control, a colored line will always appear at the control line region, indicating that proper volume of specimen has been added and membrane wicking has occurred

REAGENTS

Each test in the test device contains mouse monoclonal antibody-coupled particles and corresponding drug-protein conjugates. A goat antibody is employed in each control line

PRECAUTIONS

• For medical and other professional in vitro diagnostic use only. Do not use after the expiration date.

• The test device should remain in the sealed pouch until use.

• All specimens should be considered potentially hazardous and handled in the same manner as an infectious agent.

• The used test device should be discarded according to local regulations.

STORAGE AND STABILITY

Store as packaged in the sealed pouch either at room temperature or refrigerated (2-30°C). The test device is stable through the expiration date printed on the sealed pouch. The test device must remain in the sealed pouch until use. DO NOT FREEZE. Do not use beyond the expiration date.

SPECIMEN COLLECTION AND PREPARATION

Urine Assav

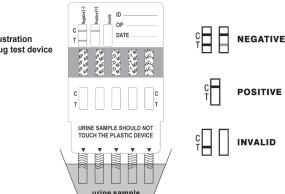
The urine specimen must be collected in a clean and dry container. Urine collected at any time of the day may be used. Urine specimens exhibiting visible precipitates should be centrifuged, filtered, or allowed to settle to obtain a clear supernatant for testing.

Specimen Storage

Urine specimens may be stored at 2-8°C for up to 48 hours prior to testing. For prolonged storage, specimens may be frozen and stored below -20°C. Frozen specimens should be thawed and mixed well before testing.

MATER	IALS
Materials P	rovided
Test devices	 Package insert
Materials Required 1	But Not Provided
 Specimen collection container 	• Timer
DIRECTIONS	FOR USE

Allow the test device, urine specimen, and/or controls to equilibrate to room temperature (15-30°C) prior to testing.


1. Bring the pouch to room temperature before opening it. Remove the test device from the sealed pouch and use it as soon as possible.

Remove the cap from the end of the test device. With arrows pointing toward the urine specimen, immerse the strip(s) of the test device vertically in the urine specimen for at least 10-15 seconds.

Immerse the test device to at least the level of the wavy lines on the strip(s), but not above the arrow(s) on the test device. See the illustration below.

2. Place the test device on a non-absorbent flat surface

3. Wait for the colored lines(s) to appear. Read results at 5 minutes. Do not interpret results after 10 minutes.

INTERPRETATION OF RESULTS

(Please refer to the illustration above)

NEGATIVE:* A colored line in the control line region (C) and a colored line in the test line region (T) for a specific drug indicate a negative result. This indicates that the drug concentration in the urine specimen is below the designated cut-off level for that specific drug.

*NOTE: The shade of color in the test line region (T) may vary, but it should be considered negative whenever there is even a faint colored line.

POSITIVE: A colored line in the control line region (C) but no line in the test line region (T) for a specific drug indicates a positive result. This indicates that the drug concentration in the urine specimen exceeds the designated cut-off for that specific drug

INVALID: Control line fails to appear. Insufficient specimen volume or incorrect procedural techniques are the most likely reasons for control line failure. Review the procedure and repeat the test using a new test device. If the problem persists, discontinue using the lot immediately and contact your local distributor.

QUALITY CONTROL

A procedural control is included in the test. A colored line appearing in the control line region (C) is considered an internal procedural control. It confirms sufficient specimen volume, adequate membrane wicking and correct procedural technique.

Control standards are not supplied with this kit. However, it is recommended that positive and negative controls be tested as good laboratory practice to confirm the test procedure and to verify proper test performance.

LIMITATIONS

1. The Multi-Drug One Step Screen Test Device (Urine) provides only a qualitative, preliminary analytical result. A secondary analytical method must be used to obtain a confirmed result. Gas chromatography/mass spectrometry (GC/MS) is the preferred confirmatory method.2,3

2. There is a possibility that technical or procedural errors, as well as other interfering substances in the urine specimen may cause erroneous results.

3. Adulterants, such as bleach and/or alum, in urine specimens may produce erroneous results regardless of the analytical method used. If adulteration is suspected, the test should be repeated with another urine specimen.

4. A positive result does not indicate level or intoxication, administration route or concentration in urine.

5. A negative result may not necessarily indicate drug-free urine. Negative results can be obtained when drug is present but below the cut-off level of the test.

6. The test does not distinguish between drugs of abuse and certain medications.

7. A positive result might be obtained from certain foods or food supplements. PERFORMANCE CHARACTERISTICS

Accuracy

A side-by-side comparison was conducted using the Multi-Drug One Step Screen Test Device (Urine) and a commercially available drug rapid test. Testing was performed on approximately 300 specimens previously collected from subjects presenting for Drug Screen Testing. Presumptive positive results were confirmed by GC/MS. Negative urine specimens were screened initially by Predicate test, 10% negative specimens were confirmed by GC/MS. The following results were tabulated:

		%	Agreem	ent with	Com	mer	rcial K	it					
AMP	AMP 500	AMP 300	BAR	BZO	TR	L	BUP*	*	COC		COC 150	THC	MTD
>99%	*	>99%	98%	99%	*		88%		>99%		>99%	>99%	87%
>99%	*	>99%	>99%	>99%	*		>99%	<i>.</i>	99%		>99%	>99%	>99%
>99%	*	>99%	99%	99%	*		97%		99%		>99%	>99%	94%
MET	MET 500	MET 300	MDN					C	XY	Р	CP	PPX	TCA
>99%	>99%	*	98%	6 94	%	- 99	9%	9	6%	>9	9%	>99%	92%
>99%	82%	*	>99	% >9	9%	>9	9%	9	9%	>9	9%	>99%	>99%
>99%	89%	*	99%	6 93	%	99	9%	9	8%	>9	9%	>99%	98%
	>99% >99% >99% MET >99% >99%	AMP 500 >99% * >99% * >99% * MET MET 500 >99% >99% >99%	AMP AMP 500 AMP 300 >99% >99% >99% >99% >99% >99% MET MET 500 300 >99% >99% >99% 82% *	AMP AMP 500 AMP 300 BAR >99% >99% \$99% \$99% >99% * >99% \$99% >90% * >99% \$99% MET MET 500 MET 300 MDN 988 >99% 82% * >99	AMP AMP 500 AMP 300 BAR BZ BZO >99% * >99% 98% 99% >99% * >99% 99% 99% >99% * >99% 99% 99% MET MET 500 MET 500 MDM 300 MDM 33 MDM 33 MDM 33 >99% 82% * >99% >99	AMP AMP 500 AMP 300 BAR BAR BZO TR >99% \$>99% \$8% 99% * >99% * >99% \$99% * >99% * >99% \$99% * 99% * >99% \$99% * MET MET MET MDMA MOP >99% \$99% * \$98% \$94% >99% \$299% * \$99% \$99%	AMP AMP 500 AMP 300 BAR BZO TRL >99% * >99% * >99% * >99% 99% * >99% * >99% 99% * >99% * >99% 99% * * MET MET 500 MET 300 MDMA 300 22 * >99% 82% * >99% >99% \$	AMP AMP 500 AMP 300 BAR BAR BZO TRL BUP >99% >99% 98% 99% * 88% >99% * >99% 99% * 99% 99% >99% * >99% 99% 99% * 99% 99% Somo MET MET MET MET 2000 2000 99% 82% * 99% 89% 99% 299% 299%	AMP 500 300 BAR BZO 1RL BUP** >999% * >999% 99% 99% * 88% >999% * >999% 99% 99% * >99% >999% * >999% 99% 99% * 99% >999% * >99% 99% 99% 2000 C MET MET MET MET MUMA MOP QUI 2000 >99% 82% * >99% >99% 99% 59%	AMP AMP SOF SOF SOF SOF COC >99% * >99% 88% 99% * 88% >99% >99% * >99% 99% * >99% 99%	AMP AMP 500 AMP 300 BAR BX BZO TRL BUP** COC Image: Constraint of the second seco	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

* NOTE: Commercial kit unavailable for comparison testing.

** NOTE: BUP was compared to the self-reported use of Buprenorphine

% Agreement with GC/MS

Specimen	AMP	AMP 500	AMP 300	BAR	BZO	TRL*	BUP*	COC	COC 150	THC	MTD
Positive	94%	95%	>99%	92%	98%	98%	98%	95%	99%	95%	93%
Negative	99%	>99%	99%	99%	98%	99%	99%	>99%	>99%	96%	>99%
Total	97%	98%	99%	96%	98%	99%	99%	98%	99%	95%	97%

Note: This illustration shows a 5-drug test device

	Specimen	MET	MET 500	MET 300	MDMA	MOP 300	OPI 2000	OXY	PCP	PPX	TCA**
	Positive	90%	99%	98%	98%	98%	99%	98%	90%	94%	>99%
	Negative	>99%	96%	>99%	98%	97%	99%	99%	99%	99%	94%
1	Total	95%	97%	99%	98%	97%	99%	99%	96%	97%	95%

*NOTE: BUP, TRL was based on LC/MS data instead of GC/MS. **NOTE: TCA was based on HPLC data instead of GC/MS.

Analytical Sensitivity

A drug-free urine pool was spiked with drugs to the concentrations at \pm 50% cut-off and \pm 25% cut-off. The results are summarized below.

Drug Conc.		AM	4P	AMI	P 500	AMI	P 300	B /	AR	Bž	20	TRI	. 100	B	UP
(Cut-off range)	n	-	+		+	-	+	-	+	-	+	-	+	-	+
0% Cut-off	30	30	0	30	0	30	0	30	0	30	0	90	0	90	0
-50% Cut-off	30	30	0	30	0	30	0	30	0	30	0	- 90	0	90	0
-25% Cut-off	30	26	4	24	6	25	5	23	7	24	6	81	9	78	12
Cut-off	30	23	7	16	14	16	14	14	16	15	15	54	36	48	42
+25% Cut-off	30	7	23	4	26	4	26	7	23	6	24	25	65	24	66
+50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	90	0	90
Drug Conc.		CC	DC	COC	150	TE	IC	M	гъ	м	ET	MET	F 500	MET	Г 300
(Cut-off range)	n	-	+		+	-	+	-	+	-	+	-	+	-	+
0% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-50% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-25% Cut-off	30	25	5	27	3	24	6	- 26	4	25	5	27	3	27	3
Cut-off	30	20	10	13	17	15	15	13	17	23	7	13	17	15	15
+25% Cut-off	30	5	25	7	23	6	24	5	25	6	24	7	23	5	25
+50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	- 30
Drug Conc.	n	MI	DMA	MO	P 300	OPI	2000	0	XY	P	CP	P	PX	т	-
(Cut-off range)		-	+	-	+	-	+	-	+	-	+	-	+	-	+
0% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-50% Cut-off	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-25% Cut-off	30	27	3	20	10	26	4	30	0	26	4	26	4	25	5
Cut-off	30	17	13	18	12	11	19	18	12	19	11	19	- 11	13	17
+25% Cut-off	30	6	24	7	23	5	25	6	24	5	25	8	22	7	23
+50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30

-50% Cut-on	- 30	30	0	- 30	0	- 30	0	- 30	0	- 30	0	- 30	0	- 30	0
-25% Cut-off	30	27	3	20	10	26	4	30	0	26	4	26	4	25	5
Cut-off	30	17	13	18	12	11	19	18	12	19	11	19	11	13	17
+25% Cut-off	30	6	24	7	23	5	25	6	24	5	25	8	22	7	23
+50% Cut-off	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30

Specificity

The following table lists the concentration of compounds (ng/mL) that are detected positive in urine by the Multi-Drug One Step Screen Test Device (Urine) at 5 minutes.

AMPHETAMINE		METHADONE	
d-Amphetamine	1,000	Methadone	300
d,l-Amphetamine	3,000	Doxylamine	50,000
l-Amphetamine	50,000	METHAMPHETAMINE	
Phentermine	3,000	d-Methamphetamine	1,000
3,4- Methylendioxyamphetamine (MDA)	2,000	p-Hydroxymethamphetamine	30,000
AMPHETAMINE 500		I-Methamphetamine	8,000
d-Amphetamine	500	Mephentermine	50,000
d,l-Amphetamine	1,500	3,4-Methylenedioxymethamphetamine (MDMA)	2,000
β-Phenylethylamine	50,000	METHAMPHETAMINE 500	
3,4-Methylendioxyamphetamine (MDA)	800	d-Methamphetamine	500
Phentermine	1,500	p-Hydroxymethamphetamine	15,000
Tryptamine	50,000	I-Methamphetamine	4,000
Tyramine	25,000	Mephentermine	25,000
AMPHETAMINE 300		d,l-Amphetamine	75,000
d-Amphetamine	300	(1R,2S)-(-)-Ephedrine	50,000
d,l-Amphetamine	390	β-Phenylethylamine	75,000
l-Amphetamine	50,000	3,4-Methylenedioxymethamphetamine (MDMA)	1,000
3,4-Methylendioxyamphetamine (MDA)	1,560	d-Amphetamine	50,000
p-Hydroxyamphetamine	1,560	Chloroquine	12,500
β-Phenylethylamine	100,000	1-Phenylephrine	100,000
Tyramine	100,000	METHAMPHETAMINE 300	
p-Hydroxynorephedrine	100,000	d-Methamphetamine	300
Phenylpropanolamine (d,l-Norephedrine)	100,000	d,l-Amphetamine	100,000
BARBITURATES		Chloroquine	25,000
Secobarbital	300	p-Hydroxymethamphetamine	25,000
Amobarbital	300	I-Methamphetamine	3,125
Alphenol	150	3,4-Methylenedioxymethamphetamine (MDMA)	780
Aprobarbital	200	Mephentermine	50,000
Butabarbital	75	(1R,2S)-(-)-Ephedrine	100,000
Butethal	100	I-Epinephrine	50,000
Butalbital	2,500	Ephedrine	100,000
Cyclopentobarbital	600	Fenfluramine	12,500
Pentobarbital	300	Trimethobenzamide	25,000
Phenobarbital	100	METHYLENEDIOXYMETHAMPHETAMIN	E
OXYCODONE		3,4-Methylenedioxymethamphetamine (MDMA)	500
Oxycodone	100	3,4-Methylenedioxyamphetamine (MDA)	3,000
Hydrocodone	6,250	3,4-Methylenedioxyethylamphetamine (MDEA)	300
Hydromorphone	50,000	BUPRENORPHINE	
Levorphanol	50,000	Buprenorphine	10
Naloxone	37,500	Norbuprenorphine	20
Naltrexone	37,500	Buprenorphine 3-D-glucuronide	15
Oxymorphone	200	Norbuprenorphine 3-D-glucuronide	200

BENZODIAZEPINES		PROPOXYPHENE	
Oxazepam	300	d-Propoxyphene	300
Alprazolam	196	d-Norpropoxyphene	300
α-Hydroxyalprazolam	1,262	BENZODIAZEPINES 200	
Bromazepam	1,562	Alprazolam	195
Chlordiazepoxide	1,562	α-Hydroxyalprazolam	1,562
Clobazam	98	Bromazepam	390
Clonazepam	781	Chlordiazepoxide	780
Clorazepate	195	Clobazam	390
Delorazepam	1,562	Clorazepate	1,562
Desalkylflurazepam	390	Desalkylflurazepam	1,000
· ·	195	P 1	200
Diazepam	2,500	Diazepam	
Estazolam	390	Estazolam	780
Flunitrazepam		Flunitrazepam	,
d,l-Lorazepam	1,562	(+) Lorazepam	100,000
RS-Lorazepam glucuronide	1,562	Midazolam	6,250
Midazolam	12,500	Nitrazepam	100
Nitrazepam	98	Norchlordiazepoxide	3,125
Norchlordiazepoxide	195	Nordiazepam	780
Nordiazepam	390	Oxazepam	200
Temazepam	98	Sertraline	12,500
Triazolam	2,500	Temazepam	100
MORPHINE 300		Triazolam	50,000
Morphine	300	7-Aminoflunitrazepam	200
Codeine	300	7-Aminonitrazepam	5,000
Ethylmorphine	6,250	7-Aminoclonazepam	>100,000
Hydrocodone	50,000	COCAINE	
Hydromorphone	3,125	Benzoylecgonine	300
Levorphanol	1,500	Cocaine	780
6-Monoacetylmorphine (6-MAM)	400	Cocaethylene	12,500
Morphine 3-B-D-glucuronide	1,000	Ecgonine	32,000
Norcodeine	6,250	COCAINE 150	
Normorphine	100,000	Benzoylecgonine	150
Oxycodone	30,000	Cocaine	400
Oxymorphone	100,000	Cocaethylene	6,250
Procaine	15,000	Ecgonine	12,500
Thebaine	6,250	Ecgonine methylester	50,000
OPIATE 2000	0,200	MARIJUANA	50,000
Morphine	2,000	11-nor-Δ ⁹ -THC-9 COOH	50
Codeine	2,000	Cannabinol	20,000
Ethylmorphine	5,000	11-nor-Δ ⁸ -THC-9 COOH	30
Hydrocodone	12,500	Δ ⁸ -THC	15,000
		Δ ⁹ -THC	
Hydromorphone Levorphanol	5,000 75,000		15,000
		TRICYCLIC ANTIDEPRESSANTS	1 000
6-Monoacetylmorphine (6-MAM)	5,000	Nortriptyline	1,000
Morphine 3-β-D-glucuronide	2,000	Nordoxepin	1,000
Norcodeine	12,500	Trimipramine	3,000
Normorphine	50,000	Amitriptyline	1,500
Oxycodone	25,000	Promazine	1,500
Oxymorphone	25,000	Desipramine	200
Procaine	150,000	Imipramine	400
Thebaine	100,000	Clomipramine	12,500
PHENCYCLIDINE		Doxepin	2,000
Phencyclidine	25	Maprotiline	2,000
4-Hydroxyphencyclidine	12,500	Promethazine	25,000
		TRAMADOL	
		n-Desmethyl-cis-tramadol	195
		o-Desmethyl-cis-tramadol	6,250
		cis-tramadol	100
		Phencyclidine	100,000
		Procyclidine	100,000
		Procycudine	100,000

Acetophenetidin	l-Cotinine	Ketamine
N-Acetylprocainamide	Creatinine	Ketoprofen
Acetylsalicylic acid	Deoxycorticosterone	Labetalol
Aminopyrine	Dextromethorphan	Loperamide
Amoxicillin	Diclofenac	Meprobamate
Ampicillin	Diflunisal	Methoxyphenamin
l-Ascorbic acid	Digoxin	Methylphenidate
Apomorphine	Diphenhydramine	Nalidixic acid
Aspartame	Ethyl-p-aminobenzoate	Naproxen
Atropine	β-Estradiol	Niacinamide
Benzilic acid	Estrone-3-sulfate	Nifedipine
Benzoic acid	Erythromycin	Norethindrone
Bilirubin	Fenoprofen	Noscapine
d,l-Brompheniramine	Furosemide	d,l-Octopamine
Caffeine	Gentisic acid	Oxalic acid
Cannabidiol	Hemoglobin	Oxolinic acid
Chloralhydrate	Hydralazine	Oxymetazoline
Chloramphenicol	Hydrochlorothiazide	Papaverine
Chlorothiazide	Hydrocortisone	Penicillin-G
d,l-Chlorpheniramine	o-Hydroxyhippuric acid	Perphenazine
Chlorpromazine	3-Hydroxytyramine	Phenelzine
Cholesterol	d,l-Isoproterenol	Prednisone
Clonidine	Isoxsuprine	d,l-Propanolol

Ketamine	d-Pseudoephedrine
rtetainine	
Ketoprofen	Quinidine
Labetalol	Quinine
Loperamide	Salicylic acid
Meprobamate	Serotonin
Methoxyphenamine	Sulfamethazine
Methylphenidate	Sulindac
Nalidixic acid	Tetracycline
Naproxen	Tetrahydrocortisone,
Niacinamide	3-Acetate
Nifedipine	Tetrahydrocortisone
Norethindrone	Tetrahydrozoline
Noscapine	Thiamine
d,l-Octopamine	Thioridazine
Oxalic acid	d,1-Tyrosine
Oxolinic acid	Tolbutamide
Oxymetazoline	Triamterene
Papaverine	Trifluoperazine
Penicillin-G	Trimethoprim
Perphenazine	d,l-Tryptophan
Phenelzine	Uric acid
Prednisone	Verapamil
d,l-Propanolol	Zomepirac
-	-

BIBLIOGRAPHY

1. Tietz NW. Textbook of Clinical Chemistry. W.B. Saunders Company. 1986; 1735 2. Baselt RC. Disposition of Toxic Multi-Drugs and Chemicals in Man. 2nd Ed. Biomedical Publ., Davis, CA. 1982; 488

3. Hawks RL, CN Chiang. Urine Testing for Drugs of Abuse. National Institute for Drug Abuse (NIDA), Research Monograph 73, 1986

	Index of	f Symbols		
Attention, see instructions for use	Σ	Tests per kit		Manufacturer
IVD For <i>in vitro</i> diagnostic use only	8	Use by	2	Do not reuse
2°C Store between 2-30°C	LOT	Lot Number		9
ISO, CE, GMP			<u>Roja</u> _{Rojan Az}	<u>n Azma</u> ma mfg. Co. jolestan 4. Baharestan

Industrial Estate, 5th km Karaj-

Qazvin Highway, Tehran-Iran Tel: +98-261-47 60 610

www.rojanazma.com

Cross-Reactivity

d,1-O-Desmethyl venlafaxine

25,000

A study was conducted to determine the cross-reactivity of the test with compounds in either drug-free urine or Amphetamine, Amphetamine 500, Amphetamine 300, Barbiturates, Benzodiazepines, Tramadol 100, Buprenorphine, Cocaine, Cocaine 150, Marijuana, Methadone, Methamphetamine, Methamphetamine 500, Methamphetamine 300, Methylenedioxymethamphetamine, Morphine 300, Opiate 2000, Oxycodone, Phencyclidine, Propoxyphene, Tricyclic Antidepressants positive urine. The following compounds show no cross-reactivity when tested with the Multi-Drug One Step Screen Test Device (Urine) at a concentration of 100 µg/mL.